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The flow of a liquid crystal around a particle not only depends on its shape and the viscosity coefficients but
also on the direction of the molecules. We studied the resulting drag force on a sphere moving in a nematic
liquid crystal MBBA ~4-methoxybenzlidene-48-n-butylaniline! in a low Reynold’s number approach for a
fixed director field~low Ericksen number regime! using the computational artificial compressibility method.
Taking the necessary disclination loop around the sphere into account, the value of the drag force anisotropy
(F' /F i51.50) for an exactly computed field is in good agreement with experiments (;1.5) done by conduc-
tivity diffusion measurements. We also present data for weak anchoring of the molecules on the particle
surface and of trial fields, which show to be sufficiently good for most applications. Furthermore, the behavior
of the friction close to the nematic to isotropic transition point and for a rodlike and a disklike liquid crystal
will be given. @S1063-651X~96!04411-X#

PACS number~s!: 61.30.Jf, 61.30.Cz, 83.85.Pt

I. INTRODUCTION

Most of the applications of liquid crystals are connected
to their flow properties, either while processed or in the ap-
plication itself. The reorientation of the director field, for
example, which is used in electro-optical devices, is linked to
internal flow. The fastest response times needed for further
development are limited by the friction effects. But although
the basics of the hydrodynamics of liquid crystals were es-
tablished about 30 years ago, most of the problems con-
nected with flow are still unsolved. This is mainly due to the
anisotropy of the system and the nontrivial connection of the
direction of the molecules and the velocity.

A deeper insight into the hydrodynamics of liquid crystals
and the connection between macroscopic and microscopic
properties would allow one to predict the behavior of par-
ticular materials and therefore to design special liquid crys-
tals to obtain certain characteristics required. Precision ex-
periments are often difficult to perform since many of the
standard techniques do not work for these materials. It would
be useful to have more independent methods of measuring
the viscosity than only a traditional shear flow. A further
technique, the falling ball experiment, was solved for an iso-
tropic liquid by Stokes. It consists of a ball falling down in a
cylinder driven by the gravitational force and measuring its
equilibrium velocity. The viscosityh can then be determined
by the well-known Stokes formulaFD526prhv, which
gives the relation between the friction dragFD , the radius
r of the ball, and its velocityv.

For liquid crystals this problem gets another dimension
since the drag force also depends on the geometry of the
system. It is obvious that the drag force on the sphere is
different for the two particular cases of the flow and director
parallel and the flow and director perpendicular to each
other. Using a liquid crystal of rodlike molecules, it becomes
clear that it is easier to move the particle parallel to the
general director field, i.e., along the long axis of the mol-
ecules, than to move it perpendicular to the director, i.e.,
perpendicular to the long axis. In the general case~arbitrary
angle between flow and director! this results in the fact that

the drag force is no longer parallel to the line of motion.
There is a further component perpendicular to it, the so-
called lift force, which moves the particle sideways~see Fig.
1!. It is worth mentioning that this force does not contribute
to the dissipative losses in the system, an effect well known
from other areas of physics such as electrodynamics~a
charged particle in a magnetic field is forced to change its
direction without losing or gaining any kinetic energy!.

A further problem is the influence of the director field
n̂(r ) on the flow since it not only changes but also gives a
contribution to the dissipative losses in the systems. In par-
ticular, regions of high gradients of the director field result in
higher resistance to the flow. Such regions are mainly found
around disclinations, which are often unavoidable due to the
geometry of the system. If we consider, for example, perpen-
dicular boundary conditions on the surface of the sphere and
a uniform director field far away from it, there is a disclina-
tion loop around the sphere~see Fig. 1!, which is unavoid-

FIG. 1. If a sphere falls down in a gravitational field and the
director field is not parallel to the force, there is, besides the friction
Fp antiparallel to the gravitational force, also a componentFL per-
pendicular to it, the so-called lift force. Note also the disclination
loop around the particle due to the boundary conditions, indicated
by the dots.
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able for topological reasons. The surface of the sphere cor-
responds to as51 point defect and since the overall defect
charge of the system must be zero~the director field is uni-
form far from the particle! this defect must be balanced by
the disclination loop. The energy of the ring is roughly pro-
portional to its length, therefore it is favorable to have it as
small as possible. On the other hand, the rigid boundary
conditions at the surface of the particle push the ring away
from the sphere, so that the final position is given by the
balance of the two effects.

The drag force is sensitive to the radius of this loop. In
both limiting cases~flow and director parallel or perpendicu-
lar to each other! the resistance is increased, but the magni-
tude of the influence is quite different. For the director per-
pendicular to the velocity the flow is parallel to the ring and
it acts like a plate moving in the liquid crystal. For the ve-
locity and~general! director parallel to each other the flow is
perpendicular to the ring, which not only increases the cross
section of high director gradients around the ring and the
liquid crystal flow but also has a further effect: a certain
amount of the liquid crystal has to flow through the gap
between the ring and sphere, where the director lies in the
plane of the ring and is therefore locally perpendicular to the
direction of the flow. As a consequence, the anisotropy of the
system, i.e., the ratio of the drag forces, decreases with an
increasing radius of the disclination loop. This means that
stronger boundary conditions lower the anisotropy.

The theoretical problem of a liquid crystal flowing around
a body has been addressed before. Diogo@1# assumed the
velocity field around the sphere to be the same as for an
isotropic fluid and calculated the drag force for different
angles between the director and the velocity. Roman and
Terentjev@2# obtained an analytic solution for the flow ve-
locity for a fixed uniform director field, by an expansion in
the anisotropy of the viscosity. Recently, Heuer, Kneppe,
and Schneider gave solutions for the velocity of the liquid
crystal, assuming a uniform director field, independent of the
flow @3#.

All these solutions have their deficiencies. None of them,
for instance, considered the distribution of the director field
due to the boundary conditions on the particle. This will be
done in this article, where the results are also compared with
various approximations for the directorn̂(r ).

The article is organized as follows. After a brief introduc-
tion to the basic equations of the hydrodynamics of liquid
crystals that are needed in Sec. II, we give, in Sec. III, a short
description of the numerical method we used to solve the
equations of motion. Section IV gives the director fields we
used and explains the limits when they are valid. The results
for the drag properties and a comparison with experimental
data are given in Sec. V and, finally, we conclude with a
discussion of possible experiments in Sec. VI.

II. BASIC CONCEPTS

In this section we give a brief summary of the nematic
hydrodynamics that are used in this work. For derivations of
these equations we refer the reader to the basic textbook@4#;
see also@5#. The stress tensor of a nematic liquid crystal
consists of three contributions. The first two are the hydro-
dynamic pressurep and the viscous stress given by the ten-
sor

s i j8 5a1ninjnknlAkl1a2njNi1a3niNj1a4Ai j1a5njnkAik

1a6ninkAjk . ~1!

~Here and below in this article we use the tensor index no-
tation, i.e., an index appearing twice in a product means a
summation over this index, and the shorthand notation for
gradientsB, j[¹ jB). Herea i are the viscosity~Leslie! coef-
ficients,A represents the symmetric part of the fluid velocity
gradients @Ai j5

1
2(v i , j1v j ,i)#, and the vector Ni5ṅi

1 1
2@ n̂3curlv# i is the change of the director with respect to

the background fluid. Finally, there is a static~elastic! con-
tribution due to the curvature of the director field

s i j
e52Knk, jnk,i , ~2!

given in the one-constant approximation~Frank elastic con-
stantsK15K25K3[K).

The director field is determined by the balance between
the static molecular fieldh05K¹2n̂ and the viscous molecu-
lar field hi85(a22a3)Ni1(a62a5)njAi j . The total mo-
lecular field has to be parallel to the director, buth8 can be
neglected in the low Ericksen number regime@5#
(Er5avR/K!1, wherev is a characteristic velocity andR
the radius of the sphere!. This condition is met in a typical
thermotropic liquid crystal with K;10211 N;
a;(5210)31022 Pa s in the case ofvR!1028 m2 s21,
which allows speeds of mm/s for small colloid particles
(R;10 mm).

Considering low Reynolds number flow and using the
equation of continuity we end up with seven equations

s i j , j50, ~3!

v i ,i50, ~4!

Kni , j j5lni ~5!

for seven unknown variables~three for the velocity fieldv,
three for the directorn̂ and the Lagrange multiplierl con-
strainingn̂251, and one for the pressure!. The equation~5!
for the director is decoupled from the velocity due to the low
Ericksen number approach and can be solved separately for
the static problem, which then leaves only the hydrodynamic
part of Eqs.~3! and~4!. Once the velocity fieldv(r ) and the
pressurep(r ) are obtained, the convenient way to determine
the drag force is by calculating the total dissipation in the
system

Fv`5E ~s8:A1h8•N!dV, ~6!

wherev` is the constant velocity of the fluid at infinity.

III. NUMERICAL METHOD

We followed the example of Heuer, Kneppe, and
Schneider@3# and used the artificial compressibility method
~see, for example,@6#! to solve the equations of motion. The
idea of this method is that the system starts with an arbitrary
startup velocity and pressure field and relaxes in an artificial
time towards its equilibrium, which is the solution we are
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looking for (] tp50, ] tv i50). The equations to solve are

s i j , j5] tv i , v i ,i52c2] tp, ~7!

wherec is an arbitrary damping parameter, which should be
chosen as large as possible to speed up the calculation~how-
ever, if c is too large the numerical scheme becomes un-
stable!.

Due to the linearity of Eqs.~7! it is necessary to solve
them only for the two particular cases where the flow and
director are parallel and perpendicular to each other
@ n̂(`)iv(`) andn̂(`)'v(`)#. The advantage of these solu-
tions is the simple geometry. For an arbitrary angle between
the velocity and director they are just added together, i.e., the
friction drag can be calculated by the resistance tensor
Mi j5M'd i j1(M i2M')ninj , which determines the re-
sponse of the drag force on the sphere to the flow around it:

Fi5Mi j ~ n̂!v` j5M'v` i1~M i2M'!~v`–n̂!ni .

For an isotropic liquid the tensor is simplyMi j5Md i j ,
where the constantM is given by the Stokes friction
M526pRh. The ratioM' /M i is a measure for the anisot-
ropy in the system since this gives the lift effect in the drag
force. In the first case, assuming that the flow is along the
z axis and the director is parallel to it, the system is symmet-
ric with respect to azimuthal rotations around thez axis.
When the velocity components are transformed to cylindrical
components (vx ,vy ,vz→vr ,vf ,vz) the azimuthal velocity

vf is zero everywhere in the system and the problem be-
comes two dimensional. Furthermore, it is favorable to use a
spherical coordinate system with an inverse radius
(j51/r51/Ax21y21z2, u5arctanAx21y2/z, and f
5arctany/x). This has two advantages: the outer boundary
conditions@v(`), p(`)# are included in the grid used for the
calculations and the mesh size of the grid is smaller near the
surface of the sphere, where most of the changes happen, and
large far from the particle, where the values stay almost con-
stant. It is sufficient to pursue the calculations in one quad-
rant only since the other three are given by symmetry. It is
also evident that the radial velocity must be zero at both
boundaries. The values forvz at u5p/2 can be computed as
the inner grid points, whereas the values atu50 request
special treatment since they contain the term cosu and are
therefore of the form 0/0. Since it was not possible to obtain
them by an interpolation, we simplified the equation by tak-
ing the limit for u50 @vz(j,0)5 limu→0vz(j,u)# analytically
~application of l’Hôpital’s rule!.

In the second case, the director perpendicular to the ve-
locity, there is no rotational symmetry and the calculations
have to be done on a three-dimensional grid. It is again fa-
vorable to use spherical coordinates with an inverse radius
~see Fig. 1! for the reasons explained above, but this time
the velocity components are kept Cartesian@i.e.,
vx(j,f,u),vy(j,f,u),vz(j,f,u)#. Due to the symmetry it is
sufficient to solve the equations in one octant. The conditions
on the boundaries of this octant and the needed values are
calculated as is shown in Table I.

FIG. 2. One layer of the matrix (j51/r5const) and its transformation to real space. The lines of the constant anglef transform to
longitudes and the constantu to latitudes. Note the decreasing distance between two longitudes while approaching the pole. This yields a
nonunique point atu50.

TABLE I. Treatment of the boundaries around the first octant. The notation bc refers to the fact that this
value is fixed by the boundary conditions of the problem, symm denotes given by symmetry, the values given
by cal can be calculated with the untreated equations of motion, se-inter is the value determined by an
analytically simplified equation for the uniform field and by an interpolation for the nonuniform field, and
finally extr means the value was calculated by an extrapolation.

j50 j51 f50
f5

p

2
u50

u5
p

2

vx bc→0 bc→0 cal symm→0 symm→0 symm→0
vy bc→0 bc→0 symm→0 cal bc→0 bc→0
vz bc→1 bc→0 cal cal se-inter cal
p bc→0 extr cal cal se-inter bc→0
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The constant number of grid points in the plane of the
azimuthal anglef direction ~independent ofu) leads to a
decrease in the mesh size in real space while approaching the
pole and finally yields a nonuniqueness for the pole (u50)
itself. A constant distance in real space would require fewer
points ~a factor ;0.7), but it involves more calculations
since the derivatives become more difficult. Therefore we
chose the grid shown in Fig. 2. The values at thez axis,
which are nonunique, were then calculated for eachf and
set to their average overf @vz(j,f,0)5^vz(j,f,0)&f for
everyj#.

IV. DIRECTOR FIELD

As described above, the director field can be taken as
fixed during the calculations in the low Ericksen number
regime. In order to study the influence of simplifying as-
sumptions concerning the form of the field we performed the
calculations with different director fieldsn̂(r ). In the one-
constant approximation the director field is described by the
minimum of the Frank free energyFd

Fd5E ~¹•n̂!21~¹3n̂!2dV. ~8!

If we take into account thatn̂ is a unit vector and setn̂(`)
parallel to thez axis, we can write the director components
as

nx5sinb sing, ~9!

ny5sinb cosg, ~10!

nz5cosb, ~11!

whereb andg are angles dependent on the spatial coordi-
nates. The director field in our problem is rotationally sym-
metric with respect to thez axis. We can therefore set
g5arctany/x. Inserting this into Eq.~8! and minimizing it,
we are left with one equation for the polar angleb(r ):

¹2b2
sin2b

2r 2sin2u
50, ~12!

whereb is a function of the radiusr and the azimuthal angle
u. There are several possibilities to proceed with finding the
static director field~see Fig. 3!.

~i! If we neglect the boundary conditions on the surface
~anchoring energy is zero! we get the ~trivial! solution
b(r ,u)[0, i.e., the director is uniform in space, parallel to
thez axis. This was the approach chosen by Heuer, Kneppe,
and Schneider authors@3# in their analysis.

~ii ! Provided the anchoring on the surface is weak and
therefore the angleb @the deviation fromn̂(`)# remains
small, Eq.~12! can be linearized and yields

¹2b2
b

r 2sin2u
50. ~13!

This equation, with the corresponding boundary conditions
and the symmetry of the problem, can be easily solved and

givesb5(RW/4K)R3sin2u/r3, whereW is the anchoring en-
ergy andR the radius of the particle@7#.

~iii ! If we assume strong anchoring on the surface of the
sphere (WR/K@1) the director field is forced to have a dis-
clination loop~radiusa) around the equator of the field. The
direction of the molecules in the plane of the ring must be
radial between the ring and disclination and parallel to the
z axis in this plane outside the disclination. Furthermore, the
perturbation of the field must decay as 1/r 3 far from the
sphere. The simplest function that shows this behavior is

b5u2
1

2
arctan

sin2u

cos2u1S ar D
3 . ~14!

There is an extensive discussion of the features and details of
the director field in the strong anchoring regime@7#. The
conclusion reached@7# is that Eq.~14! provides a very good
approximation, describing well the far-field behavior, the
disclination ring vicinity, and even the weak anchoring case
when the ring radiusa is takena→WR4/4K.

~iv! There is no analytical solution for the whole problem
@satisfying Eq.~12! and the boundary conditions#. We there-
fore solved the equilibrium equation~12! numerically with a
method similar to the artificial compressibility method men-
tioned before. In this way we obtain the exact director field
n̂(r ) on every point of our grid.

V. RESULTS

First we examine the influence of the different director
fields @uniform, trial function b, and the exact numerical
n̂(r )# on the drag force acting on the sphere, using the par-

FIG. 3. Director fields for~a! no anchoring at the surface of the
sphere,~b! weak anchoring,~c! arctan field, and~d! numerical so-
lution fulfilling the boundary conditions. The black dots show the
position of the disclination loop and the gray dots show where they
would be~having this director field without the sphere!.
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ticular set of viscous coefficients of 4-methoxybenzlidene-
48-n-butylaniline ~MBBA ! @4#. As expected, the uniform
field shows a much lower drag force for both principal con-
figurations of n̂(`) and v(`) than the trial field and the
exact field; see Fig. 4~for the velocity parallel to the director
it is even smaller than for the isotropic drag force!. On the
other hand, the anisotropy of the drag forces~the ratio of the
two forcesF'/F i) becomes smaller for the realistic nonuni-
form field. This is due the following: the flow velocity
around the sphere is highest in the region of the equator
plane perpendicular to the line of motion. If the liquid crystal
is oriented along the samez axis we get a very high gradient
of the director in exactly the same region due to the effect of
the disclination ring. In the other principal configuration,
where the directorn̂(`) is perpendicular to thez axis and
therefore perpendicular to the velocity, the disclination with
its high gradients is the same, but this time the loop is around
a longitude of the sphere. It still increases the drag, but in a
much smaller region since the flow velocity at the stagnant
poles is almost zero already. The anisotropy in the drag force
for the three director fields yields

F'

F i
U
uniform

51.69,
F'

F i
U
trialb

51.50,
F'

F i
U
exact

51.50.

~15!

The results obtained with the trial field are surprisingly
close to those of the exact director field. They obviously
reflect the important features of the field that are mainly the
disclination loop and the 1/r 3 decay of the deviation in the
angle far from the particle, whereas the particular details near
the particle and the disclination seem to be of minor impor-
tance. Therefore, the drag force is determined by the long-
range effects. The difference between the drag force of the
trial functions and the drag force obtained from the exact
numerical solution is less than 1% and the difference in the
force ratios is smaller than the accuracy of the calculations.
In most practical cases it should be sufficiently accurate to
use these trialn̂(r ) fields instead of a numerical solution of
the governing equations. The uniform field, on the other
hand, is not a very useful assumption since its resulting drag

force differs from that for the exactn̂(r ) distribution by up to
20%. The significantly higher ratio is a particular problem
since it shows that the effect of boundary conditions on the
surface cannot be simply modeled by a larger effective hy-
drodynamic radius. The dependence on the mutual orienta-
tion of n` andv` is too strong.

These results can be compared with experimental figures.
The diffusion of particles in a nematic liquid crystals@8# is
described by the diffusion tensorD, which is indirectly pro-
portional to the resistance tensor,D5kBT(M )21, wherekB
is the Boltzmann factor andT the temperature. Conse-
quently, the tensor is of the same form as the mobility tensor
Di j5D'd i j1(D i2D')ninj , with D'5kBT/M' and D i
5kBT/M i . Recent experiments@9# showed for the self-
diffusion constants of MBBA a ratio ofD i /D';1.5. Easier
to determine experimentally is the anisotropy in the electric
conductivity @12# m of a sample, which is related to the dif-
fusion by

D5
kBT

ne2
m ~16!

for n charge carriers of chargee per cm3. The conductance
anisotropy was often measured@4# and for MBBA it is usu-
ally equal tom i /m';1.5. Both experiments are in excellent
agreement with our result forM' /M i51.50.

The dependence of the drag force on the temperature is
also of great interest in many experiments. The viscous co-
efficientsa1, a2, a3, a5, anda6, in the first approximation,
depend linearly on the order parameterS in the region close
to the nematic to isotropic transition temperatureTni . The
order parameterS itself can be approximated by Haller’s
equation@10#

S5DS1S 12
T

Tni
D g

, ~17!

whereg is determined experimentally for MBBA@11# to be
g50.188. The viscous coefficients scale, therefore,

a1→a1S, a2→a2S, a3→a3S,

a4→a4 , a5→a5S, a6→a6S. ~18!

The drag force shows, for the perpendicular case, more or
less the same behavior for all director fields: after a jump at
the transition point, it increases while lowering the tempera-
ture, in the beginning rapidly, then slower and slower. On the
other hand, there is a qualitative change for the parallel drag
force: while it jumps to a lower value and then decreases
further for the uniform field, it shows a small change to a
higher value at the transition point at which it stays almost
constant independent of the temperature, for both the trial
field of b and the exact field~see Fig. 4!.

The boundary conditions are not absolutely rigid in many
experiments due to a finite anchoring energy, in which case
the approximative director field~13! can be used. A typical
colloidal particle of radiusR51025 m in a liquid crystal
with an elastic constant ofK;10211 N has an anchoring
energy ofW;1025–1027 J/m2. This corresponds to a rel-
evant dimensionless factor ofWR/K50.1–10. Our calcula-

FIG. 4. Drag force on the sphere for three different director
fields ~uniform, trial, and real field! depending on the effective tem-
peratureT/Tni . The upper lines are for the case of the director and
velocity parallel and the lower ones for the director and velocity
perpendicular to each other.
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tions showed a slow linear increase of the drag forcesF' and
F i in the range of weak anchoring,WR/K50–4 due to the
deviation of the director field from the uniform state. This
results in gradients in the field that increase the dissipation
and therefore the resistance of the particle to the flow. The
effect on the force in the parallel caseF i is obviously stron-
ger than in the perpendicular caseF' , which is reflected in a
linear decrease of the anisotropy ratioF' /F i while enlarging
the anchoring energyW.

The authors of@7# have also examined the case of charged
particles, when the radial electric field near the surface forces
the disclination loop to be pushed further away from the
particle. An approximate expression for the loop radiusa is
then given by

a25
eaq

2

32e2~5K1K1322K24!
, ~19!

where ea is the dielectric constant,q the charge of the
sphere, andK13 andK24 elastic constants~assuming no im-
mediate screening!. One expects an increase in the drag
forces and a decrease in their ratio since the hydrodynamical
effective cross section of large director gradients is increased
far more for the parallel case than for the perpendicular one.
For instance, taking the loop radiusa;2R, the results for the
MBBA set of Leslie coefficients are

F'51.75F iso, F i51.23F iso,
F'

F i
51.43, ~20!

where the drag forces are given in units of MBBA in the
isotropic phaseF iso526pRhv usingh50.5a4 as the vis-
cosity coefficient. As mentioned above, the anisotropy of the
drag forces decreases with increasing the strength of the
boundary conditions fromF' /F i51.69 for the uniform field
~anchoring energyW50), followed by a slow linear increase
for weak anchoring (WR/K!1), andF' /F i51.5 for rigid
anchoring toF' /F i51.43 for the case of the charged par-
ticle, which can be considered as ‘‘overly strong’’ anchoring.

The molecular characteristics of the liquid crystal are in-
herent in the viscous coefficients. These coefficients depend,
among other things, on the shape of the molecules that form
the liquid crystal. This influence can be modeled by an affine
transformation model@13# giving the viscous coefficients de-
pending on the molecular aspect ratiol i / l' :

a152
1

2
a0S l i

l'
2
l'
l i

D 2, a25
1

2
a0S 12F l i

l'
G2D ,

a35
1

2
a0S F l'l i

G221D , a45a4 , a552a2 , a65a3 .

~21!

Baalss and Hess@13# determined the aspect ratio of
MBBA to be l i / l'55/2. We used this value to obtain the
constanta0 by comparing the largest coefficienta2 with the
experimental value and the isotropic coefficienta4 was taken
from MBBA directly. We calculated the example cases of
two particular configurations: a rodlike molecule with ratio
l i / l'57/2 and a disklike systeml i / l'53/5. The results of
these calculations are

F'52.33F iso, F i51.78F iso,

F'

F i
51.31 ~rodlike molecule!,

F'50.94F iso, F i51.52F iso,

F'

F i
50.62 disklike molecule. ~22!

Note the inverted ratio of the drag forces for the disklike
molecules.

VI. CONCLUSION

Considering the low Ericksen number regime
(Er5avR/K!1) the director field can be taken as indepen-
dent of the flow in the first approximation. We therefore took
several static director fields~approximations for the field in
the limit of strong and weak anchoring and the solution of
the governing equations!. The equations of motion were then
solved numerically for the different fieldsn̂(r ) using the vis-
cous coefficients of MBBA. Due to the linearity of the Eqs.
~7! it is only necessary to solve two limiting case, for the
director and velocity parallel and perpendicular to each other
at infinity @ n̂(`)iv(`) and n̂(`)'v(`)#. This yields the
drag forcesF i andF' , which can be combined for the gen-
eral case by the mobility tensor.

The comparison of the drag forces for the different direc-
tor fields showed that the disclination loop around the
sphere, which is topologically necessary for a large anchor-
ing energy of the molecules on the surface, not only in-
creases the forces itself but also decreases their ratio to
F' /F i51.50 compared to a uniform case (F' /F i51.69).
Trial director fields, constructed from the basic features of
the director field~the disclination ring and 1/r 3 decay of the
far field!, showed to be a very good approximation. The
difference between the values ofF i andF' compared to the
ones obtained for the exact field is less than 1%.

The temperature dependence of the drag force showed an
increase in the forceF' for decreasing temperature and an
almost constant value for the parallel force (F i). An approxi-
mation for the director field for weak anchoring energy
shows a linear decrease for lowering the anchoring energy in
both particular drag forces as well as in their ratio.

The value for MBBA (F' /F i51.50), using the exact so-
lution of the director field, is in good agreement with experi-
mental results, measured by the static conductivity and the
self-diffusion of MBBA ~both;1.5).

The disclination loop can be pushed away from the
sphere, for instance, in the case of nonscreened charges on
the particle. This increases the particular forces compared
with the uncharged case, where the loop is close to the sur-
face, and yields, for a loop radius of twice the particle radius,
an even lower ratio ofF' /F i51.43.

The viscous coefficients of other materials can be ap-
proximated by an affine transformation model, which uses
the aspect ratio (l i / l') of the molecules as parameter. For a
rodlike molecule (l i / l'57/2! we obtained an anisotropy in
the drag force ofF' /F i51.31 and for a disklike molecule
( l i / l'53/5! the ratio obtained wasF' /F i50.62. The ratio
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smaller than one indicates that the lift force turns the particle
away from the director, whereas a ratio larger than one
forces the particle in the direction of the director.

It is especially interesting to examine the lift component
of the drag force, i.e., the nondissipative force acting perpen-
dicular to the line of particle motion. It resembles magnetic
forces and leads to physical phenomena, similar to the Hall
effect. In a long cell, the ratio between the cross voltage
U* and the applied voltageU is determined by the anisot-
ropy ratioV5m i /m' @12#

U*

U
52

b

a

sin2u

~V11!/~V21!2cos2u
, ~23!

wherea is the width of the sample~in direction of the ap-
plied voltage! andb the thickness of the sample~in direction
of the cross voltage!. The conductivity is determined by the
movement of the charge carriers and therefore inversely pro-
portional to the resistance, which yields, for the anisotropy
ratios,V5M' /M i5F' /F i .

Since it is difficult to produce samples of liquid crystals
without disclinations, which are sufficiently large to perform
measurements of moving particles, the effect of the lift force
~the component of the drag force that is perpendicular to the

driving force! could be observed in a long cylinder. If the
boundaries force the liquid crystal to be perpendicular to the
walls of the cylinder, the director field will ‘‘escape to the
third dimension,’’ i.e., it will turn around to be parallel to the
long axis of the cylinder while approaching its center since
this is energetically much more favorable than a disclination
line. If the distances with the same well-defined curvature
along thez axis are large enough, little spheres, which are
dropped in the sample, should show a certain measurable
displacement during their way down in a gravitational field.

Further possibilities are the usage of electric and magnetic
fields. Moving particles can be guided by changing the di-
rector orientation in the sample to direct them to a certain
destination in the sample. This enables the guiding of un-
charged and unpolarizable particles with electric or magnetic
fields.
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